UnivIS
Informationssystem der Otto-Friedrich-Universität Bamberg © Config eG 
Zur Titelseite der Universität Bamberg
  Sammlung/Stundenplan Home  |  Anmelden  |  Kontakt  |  Hilfe 
Suche:      Semester:   
 Lehr-
veranstaltungen
   Personen/
Einrichtungen
   Räume   Telefon &
E-Mail
 
Das Sommersemester 2022 findet in Präsenz statt. Weitere Informationen entnehmen Sie bitte den FAQ-Seiten der Universität.
 
 Darstellung
 
kompakt

kurz

Druckansicht

 
 
Stundenplan

 
 
 Extras
 
alle markieren

alle Markierungen löschen

Ausgabe als XML

 
 
 Außerdem im UnivIS
 
Vorlesungsverzeichnis

 
 
Veranstaltungskalender

 
 
Einrichtungen >> Fakultät Wirtschaftsinformatik / Angewandte Informatik >> Bereich Angewandte Informatik >>

Professur für Angewandte Informatik, insbes. Kognitive Systeme

 

KogSys-KogInf-Psy: Grundlagen der Kognitiven Informatik [KogInf]

Dozentinnen/Dozenten:
Ute Schmid, Martin Hillebrand
Angaben:
Vorlesung und Übung, ECTS: 3, Für Studierende der Psychologie sowie Nebenfachstudierende
Termine:
Mo, 10:00 - 12:00, WE5/05.005, WE5/05.004
Voraussetzungen / Organisatorisches:
Für BA-Psychologie: Erste LV im Pflichtbereich Angewandte Kognitionspsychologie; Für Nebenfachstudierende: Kann mit dem BA-Seminar Kognitive Systeme kombiniert werden, um 6 ECTS zu erwerben.
Inhalt:
Grundlagen der Informatik und der Künstlichen Intelligenz - insbesondere Logik und Wissensrepräsentation sowie Suchalgorithmen und Produktionssysteme - werden eingeführt und in praktischen, in die Vorlesung integrierten, Übungen vertieft. Darauf aufbauend werden grundlegende Ansätze und Techniken der kognitiven Modellierung eingeführt: Der Produktionssystem-Ansatz ACT-R, Modellierung mit neuronalen Netzen, Analogiemodelle sowie aktuelle Entwicklungen und Anwendungsbereiche.
Empfohlene Literatur:
Schmid, U. (2006). Computermodelle des Denkens und Problemlösens. In J. Funke (Hrsg.), Enzyklopädie der Psychologie, Themenbereich C Theorie und Forschung, Serie II Kognition, Band 8 Denken und Problemlösen Hogrefe.

 

Seminar Kognitive Systeme

Dozent/in:
Ute Schmid
Angaben:
Seminar, 2 SWS, ECTS: 3
Termine:
Do, 10:00 - 12:00, WE5/05.003
Voraussetzungen / Organisatorisches:
Vorleistungen: KogSys-IA
Inhalt:
Aufbauend auf den in den Vorlesungen und Übungen des Faches Kognitive Systeme erworbenen Kenntnissen und Fertigkeiten wird im Seminar die eigenständige Erarbeitung und Präsentation eines Themengebiets auf der Basis von wissenschaftlicher Literatur eingeübt. Dabei werden Kompetenzen zur Einarbeitung in vertiefende Fragestellungen anhand wissenschaftlicher Literatur sowie deren Präsentation in mündlicher und schriftlicher Form erworben. Erarbeitung eines ausgewählten Themas aus dem Bereich Intelligente Agenten.
Empfohlene Literatur:
wird zu Beginn des Seminars bekanntgegeben

 

V KogSys-KogMod-M: Kognitive Modellierung

Dozent/in:
Ute Schmid
Angaben:
Vorlesung, 2 SWS, ECTS: 6
Termine:
Mi, 8:00 - 10:00, WE5/05.003
Inhalt:
Es werden wesentliche kognitionspsychologische Grundlagen aus den Bereichen Wahrnehmung, Gedächtnis und Wissensrepräsentation sowie Grundlagen der empirischen Forschung -- Experiment, abhängige/unabhängige Variablen, Grundgedanke der Inferenzstatistik -- eingeführt. Zudem werden grundlegende Ansätze und Techniken der kognitiven Modellierung sowie verschiedene Anwendungsgebiete dargestellt. Empirische Forschungsmethoden werden anhand einer exemplarisch durchgeführten empirischen Studie vertiefend praktisch eingeübt. Ansätze zur kognitiven Modellierung werden anhand konkreter Modellierungsaufgaben mit ausgewählten Ansätzen praktisch umgesetzt.

 

Ü KogSys-KogMod-M: Kognitive Modellierung

Dozent/in:
Martin Hillebrand
Angaben:
Übung
Termine:
Di, 12:00 - 14:00, WE5/05.003
Einzeltermin am 16.11.2017, Einzeltermin am 30.11.2017, 8:00 - 10:00, WE5/05.003
ab 24.10.2017

 

V KogSys-ML-M: Lernende Systeme

Dozent/in:
Ute Schmid
Angaben:
Vorlesung, 2 SWS, ECTS: 6
Termine:
Di, 10:00 - 12:00, WE5/04.004
Zusätzlicher Termin am 16.10. in WE5/01.006
Voraussetzungen / Organisatorisches:
Vorleistungen: GdI-MfI-B, MI-AuD-B
Inhalt:
Die Veranstaltung vermittelt vertieftes Wissen und Kompetenzen im Bereich Maschinelles Lernen mit dem Fokus auf symbolischen, neuronalen und statistischen Algorithmen. Anmerkung: Die Folien sowie weitere Materialien sind überwiegend in englischer Sprache. Vorlesung: In der Vorlesung werden wesentliche symbolische, statistische und neuronale Ansätze des maschinellen Lernens mit Bezügen zum menschlichen Lernen vertiefend eingeführt. Wesentliche Themengebiete sind: Entscheidungsbaumalgorithmen, Multilayer Perzeptrons, Instance-based Learning, Induktive Logische Programmierung, Genetische Algorithmen, Bayes'sches Lernen, Lerntheorie, Induktive Programmsynthese, Reinforcement Learning. Übung: Vertiefung von in der Vorlesung eingeführten Methoden und Techniken, zum Teil mit Programmieraufgaben in Java und PROLOG.
Empfohlene Literatur:
Mitchell, Machine Learning

 

Ü KogSys-ML-M: Lernende Systeme

Dozent/in:
Johannes Rabold
Angaben:
Übung, 2 SWS
Termine:
Mo, 14:00 - 16:00, WE5/01.006
am 16.10. Vorlesung statt Übung



UnivIS ist ein Produkt der Config eG, Buckenhof