UnivIS
Informationssystem der Otto-Friedrich-Universität Bamberg © Config eG 
Zur Titelseite der Universität Bamberg
  Sammlung/Stundenplan Home  |  Anmelden  |  Kontakt  |  Hilfe 
Suche:      Semester:   
 
 Darstellung
 
Druckansicht

 
 
 Außerdem im UnivIS
 
Veranstaltungskalender

 
 
Vorlesungsverzeichnis >> Fakultät Sozial- und Wirtschaftswissenschaften >> Bachelor-/Masterstudiengang Soziologie >> Master Soziologie >> Methoden der empirischen Sozialforschung inkl. Studienschwerpunkt >>

  Fortgeschrittene Verfahren der Längsschnittanalyse: Applied Panel Data Analysis

Dozent/in
Dr. Chen-Hao Hsu

Angaben
Seminar
Rein Präsenz
4,00 SWS, Unterrichtssprache Englisch
Zeit und Ort: Di 14:00 - 18:00, RZ/00.07; Einzeltermin am 3.12.2024, Einzeltermin am 10.12.2024 14:00 - 18:00, RZ/00.06

Voraussetzungen / Organisatorisches
Please note: The course can be credited in the module MASOZ-MES4 Advanced Techniques in Longitudinal Analysis or in the module MASOZ-BF3 Research Seminar Population and Family Studies.
Recommended semester: 2nd semester or higher (preferably after taking the research design course)
Requirements: Students are expected to be familiar with the content of the compulsory lecture 'Research Design' and with multiple linear and binary logistic regression analysis. Students are also expected to be familiar with the statistical package Stata. These skills can be acquired or refreshed either through self-study or through an online tutorial. Link to Stata tutorial (Link folgt noch)
Registration: Please register in the VC of the event until 10.10.2024. Only those registered in the VC will receive all information about the course.
Type of instruction: On-site teaching
Language of instruction: English
Module exam: Portfolio in English (time: 3 months)
Accessibility: Please contact Ms. Ulrike Sennefelder (ulrike.sennefelder@uni-bamberg.de) in advance of the course if you have any needs with regard to barrier-free participation in the course.

Inhalt
Learning targets:
The central aim of this course is to enable participants to critically discuss the basic concepts and assumptions of various panel regression estimators for linear and binary dependent variables, to conduct theory-driven empirical research, to select and specify appropriate regression models according to the ideas of modern causal analysis, to independently carry out panel data analyses using the statistical package Stata and data from the German Socio-Economic Panel (SOEP), to correctly interpret the results and to clearly present the results of regression analyses in tables and graphs.

Course contents:
The course begins by explaining the basic logic of panel design compared to cross-sectional design, and by practicing the preparation and descriptive analysis of panel data in Stata. In the next step, pooled ordinary least squares (POLS), fixed effect (FE), first difference (FD), random effect (RE) and hybrid models for linear dependent variables are presented and explained. The different assumptions for the consistency of the estimators (=causal inference) are compared: the exogeneity assumptions are illustrated using causal graphs, and the implications of the full rank assumption for the inclusion of time-constant regressors and the need for sufficiently time-varying regressors are discussed. In addition, the assumptions for the efficiency of the estimators (= statistical inference) are presented, appropriate statistical tests (e.g. tests for serial correlation of error terms, Hausman test) are practiced, and implications in the form of the use of panel-robust standard errors are explained. The different models are compared and practical recommendations for model selection are given. Based on the principles of theory-driven empirical research and modern causal analysis, the choice of time-constant and time-varying control variables is explained. In terms of model specification, the role of lagged dependent variables (LDV) and lagged explanatory variables (LEV) as control and causal variables (keywords: dynamic panel models, impact function, anticipation effects) is also discussed. Problems and possible solutions of bidirectional causality in the form of feedback loops and simultaneity are discussed. Aspects of modelling age, period and cohort effects and growth processes are discussed. Panel data models for binary dependent variables are presented. Finally, the issue of missing data in panel models is addressed.

In addition to theoretical introductions to the models, the logic of the various panel data estimators is illustrated using very simple game data. With a special (but not exclusive) focus on family-related research, participants will learn how to perform panel data analysis using the statistical package Stata in lab sessions. The lab sessions and the seminar papers will be based exclusively on current sociological issues in life course research (consequences of life course events) and data from the German Socio-Economic Panel (SOEP). Specifically, the course offers an applied introduction and hands-on experience in the complex preparation of panel data for statistical analyses during the lab sessions.

Englischsprachige Informationen:
Title:
Advanced Techniques in Longitudinal Analysis: Applied Panel Data Analysis

Credits: 12

Zusätzliche Informationen
Erwartete Teilnehmerzahl: 30

Institution: Lehrstuhl für Soziologie, insbes. Methoden der empirischen Sozialforschung

Hinweis für Web-Redakteure:
Wenn Sie auf Ihren Webseiten einen Link zu dieser Lehrveranstaltung setzen möchten, verwenden Sie bitte einen der folgenden Links:

Link zur eigenständigen Verwendung

Link zur Verwendung in Typo3

UnivIS ist ein Produkt der Config eG, Buckenhof