|
Einrichtungen >> Fakultät Wirtschaftsinformatik / Angewandte Informatik >> Bereich Angewandte Informatik >> Lehrstuhl für Erklärbares Maschinelles Lernen >>
|
xAI-Proj-M: Masterprojekt Erklärbares Maschinelles Lernen (xAI-Proj-M)
- Dozentinnen/Dozenten
- Ines Rieger, Prof. Dr. Christian Ledig
- Angaben
- Übung
Rein Präsenz 4,00 SWS
Zeit und Ort: Do 14:00 - 18:00, WE5/05.005
- Voraussetzungen / Organisatorisches
- Interest and registration
If you have questions or want to express interest, please send an Email with name and matriculation number to ines.rieger@uni-bamberg.de. Registration via central VC course
- Inhalt
- Topic: Deep Learning Life Cycle
Degree Program: M.Sc. AI, M.Sc. WI, M.Sc. ISoSySc, M.Sc. CitH (6 ECTS)
Requirements: Successfully passed the exam to KogSys-ML-M or AI-KI-B (Introduction to AI)
Beneficiaries: Knowledge in programming (Python), practical / hands-on knowledge in deep learning, scientific writing, LaTeX
Description The project provides the opportunity to work in small groups of 3 students in a hands-on fashion. The goal is to understand and implement the different steps to successfully train a deep learning model.
We will focus on the advantages and disadvantages of the design choices in data-preprocessing, model training, and model evaluation. You will gain theoretical knowledge about the design choices as well as practical knowledge by implementing these steps.
For the implementation, you are expected use Python and the deep learning framework PyTorch. Other libraries are free to choose.
At the end of the semester, you will present your results and hand in a technical project report.
The project builds on and adds practical experience to the knowledge from corresponding lectures and exercises in the area of machine learning.
Goals Students will familiarize themselves with a specific aspect of robust, explainable machine learning systems. Participants will learn to tackle a research-oriented question or problem independently, with little guidance. This will often involve the critical tasks: literature review, preparation and examination of datasets, implementation and comparison of prototypes, quantitative and qualitative evaluation of approaches. Within small groups, participants will learn to coordinate their project in a team and get comfortable with best practices of software development (e.g., testing, VCS).
Documentation and presentation of the project will help to develop both oral (presentation) and written (technical project report) communication skills in a scientific environment. In comparison to the Bachelor Project this Master Project is more ambitious in terms of complexity of selected topics as well as expectations with respect to deliverables and presentations.
Format
TBD
Expected workload & Grading
The workload of this module is expected to be roughly as follows:
- Attendance of project meetings / presentation: 35h
- Literature review and familiarization with topic (individual and within the team): 20h
- Implementation of selected algorithm / methodology: 70h
- Preparation of presentation: 15h
- Written documentation and report: 40h
The grade will be determined in equal parts based on the presentation and report. Attendance of the presentations is mandatory.
- Englischsprachige Informationen:
- Title:
- xAI-Proj-M: Masterproject Explainable Machine Learning
- Credits: 6
- Zusätzliche Informationen
- Erwartete Teilnehmerzahl: 18
Hinweis für Web-Redakteure: Wenn Sie auf Ihren Webseiten einen Link zu dieser Lehrveranstaltung setzen möchten, verwenden Sie bitte einen der folgenden Links:Link zur eigenständigen Verwendung Link zur Verwendung in Typo3
|
|
|
|
UnivIS ist ein Produkt der Config eG, Buckenhof |
|
|