UnivIS
Informationssystem der Otto-Friedrich-Universität Bamberg © Config eG 
Zur Titelseite der Universität Bamberg
  Sammlung/Stundenplan Home  |  Anmelden  |  Kontakt  |  Hilfe 
Suche:      Semester:   
 Lehr-
veranstaltungen
   Personen/
Einrichtungen
   Räume   Telefon &
E-Mail
 
 
 Darstellung
 
Druckansicht

 
 
 Außerdem im UnivIS
 
Vorlesungsverzeichnis

 
 
Veranstaltungskalender

 
 
Einrichtungen >> Fakultät Wirtschaftsinformatik / Angewandte Informatik >> Bereich Angewandte Informatik >> Lehrstuhl für Erklärbares Maschinelles Lernen >>

  xAI-Proj-M: Masterprojekt Erklärbares Maschinelles Lernen (xAI-Proj-M)

Dozentinnen/Dozenten
Ines Rieger, Prof. Dr. Christian Ledig

Angaben
Übung
Rein Präsenz
4,00 SWS
Zeit und Ort: Do 14:00 - 18:00, WE5/05.005

Voraussetzungen / Organisatorisches
Interest and registration If you have questions or want to express interest, please send an Email with name and matriculation number to ines.rieger@uni-bamberg.de. Registration via central VC course

Inhalt
Topic: Deep Learning Life Cycle

Degree Program: M.Sc. AI, M.Sc. WI, M.Sc. ISoSySc, M.Sc. CitH (6 ECTS)
Requirements: Successfully passed the exam to KogSys-ML-M or AI-KI-B (Introduction to AI)
Beneficiaries: Knowledge in programming (Python), practical / hands-on knowledge in deep learning, scientific writing, LaTeX

Description The project provides the opportunity to work in small groups of 3 students in a hands-on fashion. The goal is to understand and implement the different steps to successfully train a deep learning model. We will focus on the advantages and disadvantages of the design choices in data-preprocessing, model training, and model evaluation. You will gain theoretical knowledge about the design choices as well as practical knowledge by implementing these steps. For the implementation, you are expected use Python and the deep learning framework PyTorch. Other libraries are free to choose. At the end of the semester, you will present your results and hand in a technical project report. The project builds on and adds practical experience to the knowledge from corresponding lectures and exercises in the area of machine learning.

Goals Students will familiarize themselves with a specific aspect of robust, explainable machine learning systems. Participants will learn to tackle a research-oriented question or problem independently, with little guidance. This will often involve the critical tasks: literature review, preparation and examination of datasets, implementation and comparison of prototypes, quantitative and qualitative evaluation of approaches. Within small groups, participants will learn to coordinate their project in a team and get comfortable with best practices of software development (e.g., testing, VCS). Documentation and presentation of the project will help to develop both oral (presentation) and written (technical project report) communication skills in a scientific environment. In comparison to the Bachelor Project this Master Project is more ambitious in terms of complexity of selected topics as well as expectations with respect to deliverables and presentations.

Format TBD

Expected workload & Grading
The workload of this module is expected to be roughly as follows:
  • Attendance of project meetings / presentation: 35h
  • Literature review and familiarization with topic (individual and within the team): 20h
  • Implementation of selected algorithm / methodology: 70h
  • Preparation of presentation: 15h
  • Written documentation and report: 40h

The grade will be determined in equal parts based on the presentation and report. Attendance of the presentations is mandatory.

Englischsprachige Informationen:
Title:
xAI-Proj-M: Masterproject Explainable Machine Learning

Credits: 6

Zusätzliche Informationen
Erwartete Teilnehmerzahl: 18

Hinweis für Web-Redakteure:
Wenn Sie auf Ihren Webseiten einen Link zu dieser Lehrveranstaltung setzen möchten, verwenden Sie bitte einen der folgenden Links:

Link zur eigenständigen Verwendung

Link zur Verwendung in Typo3

UnivIS ist ein Produkt der Config eG, Buckenhof