UnivIS
Informationssystem der Otto-Friedrich-Universität Bamberg © Config eG 
Zur Titelseite der Universität Bamberg
  Sammlung/Stundenplan Home  |  Anmelden  |  Kontakt  |  Hilfe 
Suche:      Semester:   
 Lehr-
veranstaltungen
   Personen/
Einrichtungen
   Räume   Telefon &
E-Mail
 
 
 Darstellung
 
Druckansicht

 
 
 Außerdem im UnivIS
 
Vorlesungsverzeichnis

 
 
Veranstaltungskalender

 
 
Einrichtungen >> Fakultät Wirtschaftsinformatik / Angewandte Informatik >> Bereich Angewandte Informatik >> Lehrstuhl für Erklärbares Maschinelles Lernen >>

  xAI-Proj-M: Masterprojekt Erklärbares Maschinelles Lernen

Dozentinnen/Dozenten
Francesco Di Salvo, Prof. Dr. Christian Ledig

Angaben
[PJS]
Rein Präsenz
4,00 SWS, Unterrichtssprache Englisch
Zeit und Ort: Mi 14:00 - 18:00, WE5/05.005

Voraussetzungen / Organisatorisches
Interest and registration
Registration via central registration or email to francesco.di-salvo@uni-bamberg.de with matriculation number, degree program, and completed ML-related modules before October 18, 2024.

Eligibility
M.Sc. AI, M.Sc. CitH, M.Sc. WI

Requirements
Successfully passed the exam xAI-DL-M, xAI-MML-M, KogSys-ML-M or AI-KI-B (Introduction to AI)

VC-Course: https://vc.uni-bamberg.de/course/view.php?id=70916

Beneficiaries
Critical thinking, hands-on knowledge in machine learning and deep learning, fundamental aspects of medical imaging or healthcare technology, scientific writing and presenting, LaTeX.

Inhalt
Topic:
Domain Generalization for Robust Machine Learning

Overview:
Machine learning has become increasingly popular in recent years, with applications spanning healthcare, finance, energy, and numerous other sectors. Despite its success, several critical challenges remain that must be addressed before machine learning models can be reliably and robustly deployed in real-world scenarios. One such challenge is Domain Generalization (DG), which focuses on training models that can generalize to unseen or out-of-distribution data without exposure to the test domain. This is essential for creating models that perform reliably in real-world settings. In teams of 3-4, students will explore this open problem, building on state-of-the-art methods. They will formulate research questions, investigate solutions, and validate their findings with guidance from the instructor.

Initial meeting: 16/10/24 (General info, Q&A and preliminary overview - not mandatory)

Kick-off: 23/10/24 (mandatory for participants)

Englischsprachige Informationen:
Title:
xAI-Proj-M: Master Project Explainable Machine Learning

Credits: 6

Zusätzliche Informationen
Erwartete Teilnehmerzahl: 12

Hinweis für Web-Redakteure:
Wenn Sie auf Ihren Webseiten einen Link zu dieser Lehrveranstaltung setzen möchten, verwenden Sie bitte einen der folgenden Links:

Link zur eigenständigen Verwendung

Link zur Verwendung in Typo3

UnivIS ist ein Produkt der Config eG, Buckenhof